`-conformal Galilei algebras
نویسندگان
چکیده
Inequivalent N = 2 supersymmetrizations of the `-conformal Galilei algebra in d-spatial dimensions are constructed from the chiral (2, 2) and the real (1, 2, 1) basic supermultiplets of the N = 2 supersymmetry. For non-negative integer and half-integer ` both superalgebras admit a consistent truncation with a (different) finite number of generators. The real N = 2 case coincides with the superalgebra introduced by Masterov, while the chiral N = 2 case is a new superalgebra. We present D-module representations of both superalgebras. Then we investigate the new superalgebra derived from the chiral supermultiplet. It is shown that it admits two types of central extensions, one is found for any d and half-integer ` and the other only for d = 2 and integer `. For each central extension the centrally extended `-superconformal Galilei algebra is realized in terms of its super-Heisenberg subalgebra generators. CBPF-NF-003/13 ∗e-mail: [email protected] †e-mail: [email protected] ‡e-mail: [email protected]
منابع مشابه
Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs
We construct, for any given ` = 1 2 + N0, second-order nonlinear partial differential equations (PDEs) which are invariant under the transformations generated by the centrally extended conformal Galilei algebras. This is done for a particular realization of the algebras obtained by coset construction and we employ the standard Lie point symmetry technique for the construction of PDEs. It is obs...
متن کاملConformal Galilei groups, Veronese curves, and Newton-Hooke spacetimes
Finite-dimensional nonrelativistic conformal Lie algebras spanned by polynomial vector fields of Galilei spacetime arise if the dynamical exponent is z = 2/N with N = 1, 2, . . . . Their underlying group structure and matrix representation are constructed (up to a covering) by means of the Veronese map of degree N . Suitable quotients of the conformal Galilei groups provide us with Newton-Hooke...
متن کاملComments on Galilean conformal field theories and their geometric realization
We discuss non-relativistic conformal algebras generalizing the Schrödinger algebra. One instance of these algebras is a conformal, acceleration-extended, Galilei algebra, which arises also as a contraction of the relativistic conformal algebra. In two dimensions, this admits an “exotic” central extension, whereby boosts do not commute. We study general properties of non-relativistic conformal ...
متن کاملConformal Galilean-type algebras, massless particles and gravitation
After defining conformal Galilean-type algebras for arbitrary dynamical exponent z we consider the particular cases of the conformal Galilei algebra (CGA) and the Schrödinger Lie algebra (sch). Galilei massless particles moving with arbitrary, finite velocity are introduced i) in d = 2 as a realization of the centrally extended CGA in 6 dimensional phase space, ii) in arbitrary spatial dimensio...
متن کامل`-oscillators from second-order invariant PDEs of the centrally extended conformal Galilei algebras
We construct, for any given ` = 12 + N0, the second-order, linear PDEs which are invariant under the centrally extended Conformal Galilei Algebra. At the given `, two invariant equations in one time and ` + 12 space coordinates are obtained. The first equation possesses a continuum spectrum and generalizes the free Schrödinger equation (recovered for ` = 12) in 1 + 1 dimension. The second equat...
متن کاملF - 13288 Marseille Cedex 9 ( France
This article provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational “dynamical exponent”, z. The Schrödinger-Virasoro algebra of Henkel et ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013